Monday, January 11, 2010

Psoriasis linked to atherosclerosis: An unsolved mystery?

During the last years several studies have reported that patients with psoriasis are more likely to have traditional cardiovascular risk factors, such as hyperlipidemia, hypertension, diabetes, obesity, tobacco use, and a history of previous myocardial infarction (1, 2).
Very recently a new study has suggested that psoriac patients have more propensity for coronary artery, cerebrovascular and peripheral vascular diseases resulting in increased mortality. This study compared rates of heart disease, stroke-related vascular disease and peripheral artery disease (PAD), and death among 3.236 people with psoriasis (mostly men between 50-60 years) and 2.500 people without this condition. Overall people with psoriasis were nearly twice as likely to have been diagnosed with heart disease, stroke related vascular disease or PAD. What’s more, 19.6% of people with psoriasis died during the study, compared with 9.9% of participants who did not have psoriasis (3).
In reality many recent studies are showing the prevalence of subclinical atherosclerosis in patients with psoriasis compared with health patients, through a marked increase in the carotid artery intima-media thickness, measured by ultrasonography (4,5,6 ,7,8).
Also, a study has shown that subclinical atherosclerosis in psoriac patients is significantly associated with increased sugar and triglyceride levels (6)
Other studies have shown that metabolic systems may be disturbed in association with psoriasis, with many compounds formed in excess from glucose, like lactic acid (9). It is interesting to notice that Boyd and Menter found that 13 (62%) of 21 patients with erythroderma, the most severe form of psoriasis, had elevated serum lactic deydrogenase (10). Another study have indicated a shift of enzymatic activity of lactate deydrogenase in erythrocyte in psoriasis towards LDH2 and LDH1, and thus to enhanced energy production by oxidation in psoriatic patients as compared with normal controls (11).
According to some researchers the mechanism by which premature atherosclerosis develops in psoriasis remains an unsolved mystery, becoming a focus of current research to further elucidate the pathophysiology underlying and connecting these two diseases (12).
Taking in view the above findings I think the acidity theory may offer a valid and potential pathophysiological mechanism to explain the link psoriasis/atherosclerosis (13)

1) Matthew Meier and Pranav B. Sheth, Clinical Spectrum and Severity of Psoriasis. Curr Probl Dermatol. Basel, Karger, 2009, vol 38, pp 1–20. Full free paper at http://www.online.karger.com/ProdukteDB/Katalogteile/isbn3_8055/_91/_51/CUPDE38_02.pdf
2) Mehta NN, Azfar RS, Shin DB, Neimann AL, Troxel AB, Gelfand JM. Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the General Practice Research Database. Eur Heart J. 2009 Dec 27.
3) Prodanovich S, Kirsner RS, Kravetz JD, Ma F, Martinez L, Federman DG.. Association of psoriasis with coronary artery, cerebrovascular, and peripheral vascular diseases and mortality. Arch Dermatol. 2009 Jun;145(6):700-3.
4) El-Mongy S, Fathy H, Abdelaziz A, Omran E, George S, Neseem N, El-Nour N. Subclinical atherosclerosis in patients with chronic psoriasis: a potential association. J Eur Acad Dermatol Venereol. 2009 Nov 2
5) Balci DD, Balci A, Karazincir S, Ucar E, Iyigun U, Yalcin F, Seyfeli E, Inandi T, Egilmez E. Increased carotid artery intima-media thickness and impaired endothelial function in psoriasis. J Eur Acad Dermatol Venereol. 2009 Jan;23(1):1-6.
6) Tam LS, Shang Q, Li EK, Tomlinson B, Chu TT, Li M, Leung YY, Kwok LW, Wong KC, Li TK, Yu T, Zhu TY, Kun EW, Yip GW, Yu CM. Subclinical carotid atherosclerosis in patients with psoriatic arthritis. Arthritis Rheum. 2008 Sep 15;59(9):1322-31.
7) Eder L, Zisman D, Barzilai M, Laor A, Rahat M, Rozenbaum M, Bitterman H, Feld J, Rimar D, Rosner I. Subclinical atherosclerosis in psoriatic arthritis: a case-control study. J Rheumatol. 2008 May;35(5):877-82.
8) Gonzalez-Juanatey C, Llorca J, Amigo-Diaz E, Dierssen T, Martin J, Gonzalez-Gay MA. High prevalence of subclinical atherosclerosis in psoriatic arthritis patients without clinically evident cardiovascular disease or classic atherosclerosis risk factors. Arthritis Rheum. 2007 Aug 15;57(6):1074-80.
9) Meynadier J, Guilhou JJ, The biochemistry of psoriasis. Ann Dermatol Syphiligr (Paris). 1976;103(5-6):525-45.
10) A. Boyd, A. Menter, Erythrodermic psoriasis: Precipitating factors, course, and prognosis in 50 patients.Journal of the American Academy of Dermatology, 1989, Volume 21, Issue 5, Pages 985-991
11) Malina L, Volek V, Bielicky T. The activity of lactate dehydrogenase in the erythrocytes in psoriasis. Z Haut Geschlechtskr. 1969 Oct 1;44(19):877-9.
12) Shelling ML, Federman DG, Prodanovich S, Kirsner RS. Psoriasis and vascular disease: an unsolved mystery. Am J Med. 2008 May;121(5):360-5.
13) Carlos ETB Monteiro, Acidic environment evoked by chronic stress: A novel mechanism to explain atherogenesis. Available from Infarct Combat Project, January 28, 2008 at http://www.infarctcombat.org/AcidityTheory.pdf

Tuesday, January 5, 2010

Acidity: The link between Atherosclerosis and Osteoporosis.

Although the prevalence of both atherosclerosis and osteoporosis increase with age, various and accumulating evidence indicate, since the initial studies (1, 2), a more direct relationship between these 2 conditions. Confirming this association, many recent studies have shown an increased carotid intima-media thickness (IMT), a marker for atherosclerosis, among women as they develop osteoporosis (3, 4).
A very recent study have reported that hip fracture is between two and five times more common in people with cardiovascular disease than in those with no history of the disease. The researchers from this study have found that bisphosphonates not only decrease the progression of osteoporosis, but also prevent the development of atherosclerosis and reduce total mortality rate (5).
Regarding this point it is interesting to note that bisphosphonates can reduce the elevated production of lactic acid in the body (6) what allow the acidity theory concept (7) to be a strong explanation for the link atherosclerosis/osteoporosis, taking in view the proposition from A. Wachman and D.S. Bernstein made in 1968 (8), and endorsed by others (9), that the body draws minerals from the bones to neutralize acid or alkaline challenges.
BTW, an editorial published at New England Journal of Medicine (Bone, Acid, and Osteoporosis, New England Journal of Medicine, V 330:1821-1822 , June 23, 1994) brings the following quote and comments:
"Life is a struggle, not against sin, not against the Money Power, not against malicious animal magnetism, but against hydrogen ions"1 Mencken H L. Exeunt omnes. Smart Set. 1919; 60: 138–145). These words, written by H.L. Mencken about the meaning of life and death, may also apply to the struggle of the healthy skeleton against the deleterious effects of retained acid.
Carlos Monteiro

1) Dent CE, Engelbrecht HE, Godfrey RC. Osteoporosis of lumbar vertebrae and calcification of abdominal aorta in women living in Durban. Br Med J. 1968;4:76-79.
2. Fujita T, Okamoto Y, Sakagami Y, Ota K, Ohata M. Bone changes and aortic calcification in aging inhabitants of mountain versus seacoast communities in the Kii Peninsula. J Am Geriatr Soc. 1984;32:124-128
3) J. Tamaki , M. Iki, Y. Hirano, Y. Sato, E. Kajita, S. Kagamimori, Y. Kagawa and H. Yoneshima. Low bone mass is associated with carotid atherosclerosis in postmenopausal women: The Japanese Population-based Osteoporosis (JPOS) Cohort Study , Osteoporosis International, V 20, N 1 / January, 2009
4) Hiroyuki Sumino, Shuichi Ichikawa, Shu Kasama, Takashi Takahashi, Hironosuke Sakamoto, Hisao Kumakura, Yoshiaki Takayama, Tsugiyasu Kanda, Masami Murakami and Masahiko Kurabayashi, Relationship between Carotid Atherosclerosis and Lumbar Spine Bone Mineral Density in Postmenopausal Women, Hypertension Research (2008) 31, 1191–1197;
5) Ulf Sennerby, Håkan Melhus, Rolf Gedeborg, Liisa Byberg, Hans Garmo, Anders Ahlbom, Nancy L. Pedersen, Karl Michaëlsson. Cardiovascular Diseases and Risk of Hip Fracture, JAMA. 2009;302(15):1666-1673.
6 Norman H. Bell and Ralph H. Johnson. Bisphosphonates in the treatment of osteoporosis, Endocrine, Volume 6, Number 2 / April, 1997.
7) Carlos ETB Monteiro, Acidic environment evoked by chronic stress: A novel mechanism to explain atherogenesis. Available from Infarct Combat Project, January 28, 2008 at http://www.infarctcombat.org/AcidityTheory.pdf
8) Wachman A, Bernstein DS. Diet and osteoporosis. Lancet. 1968;1:958–9.
9) Frances A. Tylavsky, Lisa A. Spence Laura Harkness. The Importance of Calcium, Potassium, and Acid-Base Homeostasis in Bone Health and Osteoporosis Prevention. J. Nutr. 138: 164S–165S, 2008 full free paper at http://jn.nutrition.org/cgi/reprint/138/1/164S